

HKIE Fire Division 9th Annual Symposium Fire Tests for Tunnels

Speaker: Ir Dr. S. W. Yuen

Date: 28 April 2017

Agenda

Section 1: Introduction

Section 2: Fire Testing of Tunnel Lining

Section 3: Q & A

Section 1 Introduction of Tunnel Fire

Introduction – Why do we need to concern?

- Road Tunnel and Train Tunnels
- Long distance enclosure
- Large fire size temperature > 1,300 °C
- Concrete spalling (using of High Strength concrete)
- Loss of structural strength
- Tunnels may be collapsed

History - Disaster

- Tunnel fire at Mont Blanc Road Link
 - Connection tunnel for France / Italy
 - 11.4 km long Single-tube, two-lane, bi-directional road tunnel
 - 39 dead
 - Intense fire with temperature up to 1,300 °C
 - Serious concrete spalling
 - Reinforcement exposed and lost strength

History - Disaster

- Tunnel fire at Gotthard Tunnel
 - In Switzerland
 - 16.9 km long Single-tube, two-lane, bi-directional road tunnel
 - 11 dead
 - Intense fire with temperature up to 1,200 °C
 - Fire spread of 300 m
 - Serious concrete spalling
 - Reinforcement exposed and lost strength

Tunnel Fire – What will happen?

- Vehicles are mobile fuel tanks
 - Fire Sizes: Cars ~ 5 MW

Buses ~ 20 MW

Trucks ~ 30-100 MW

Tankers ~ 300 MW

- Maximum temperature climbs up to 1,300 °C quickly
- Long duration Fuels and enclosed environment

Tunnel Fire – Suitable Design

- Smoke Extraction System
- Provision of Refuge
- Control of Fire Spreads
- Prevention of Concrete Spalling
 - Intervention of Fire Brigade (Safety issue)

Loss of Structural Strength (Collapse of tunnels)

Tunnel Fire - Spalling

- Concrete spalling during fire
 - Hinder the intervention of fire brigade
 - Spalling concrete may harm the evacuees and firemen
 - Spalling causes exposure of re-bars
 - Re-bars at high temperature will loss strength
 - Structural unstable causes the collapse of tunnel
 - Leads to leakage of water

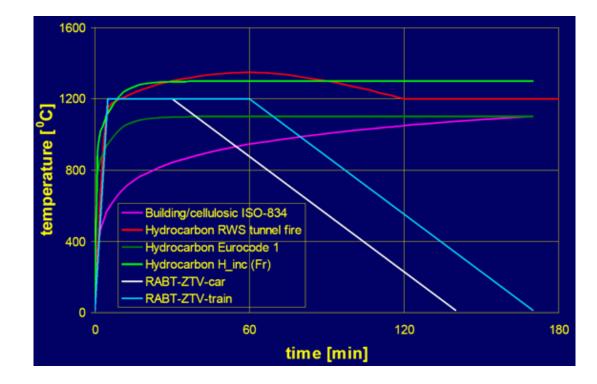
How dose Spalling happen?

Concrete heat up

- Causes Drainage and Evaporation
- Causes Steam Pressure
- Leading to Explosive Crackings
- High Strength Concrete (HSC) is particularly prone to spalling
 - Always uses for tunnel linings
 - Reduces pore volume
 - Lower permeability to release steam pressure
- Fire testing developed to give measures of tunnel lining under tunnel fire

Passive Fire Protection

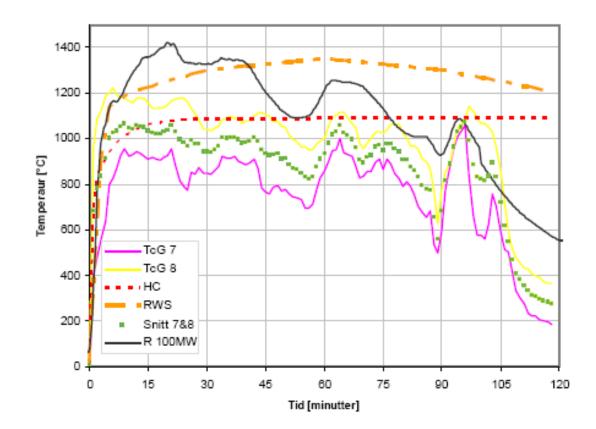
- Passive Fire Protection applied to protect tunnel structures
- Insulation materials to prevent exposure to high temperature
- Applied materials need to remain intact throughout the heating condition



Fire Testings of Tunnel Linings

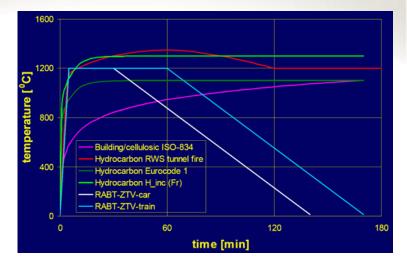
Commonly used heating curves

- Standard ISO 834 heating curve
- HydroCarbon (HC) heating curve
- RABT/ZTV heating curve
- MHC heating curve
- RWS heating curve


How to work out the heating curve

- Real scale fire or full scale fire tests
 - UPTUN Fire test in Runehamar test tunnel
 - Shows the measured HRR higher than expected from normal HGV-goods
 - Up to 200 MW
 - Fire spread to vehicles 100 m downstream
 - Full scale test by NPRA
 - A small tanker-sized pool with sizes of 40 m², approx. 11 litres diesel
 - Generate temperature up to 1,400 °C

Result from the full scale test


The result of full scale test of 40 m² diesel

Commonly used heating curve

- RWS Curve
 - much rapid heating at the initial
 - Higher maximum temperature up to 1,350 °C at 60 minutes.
 - Constant at 1,200 °C after 120 minutes
- ISO curve
 - Less rapid heating at the initial
 - Temperature is 945 °C at 60 mins, 405 °C lower compared to RWS
 - Continuous increasing throughout the test
- Rapid temperature rise cause temperature shocks to concrete
- Concrete starts to melt at temperature higher than 1,300 °C

Purposes of fire tests

- Fire test to check
 - If Spalling of concrete occurs and how serious?
 - If insulation lining is used, what is the performance?
 - Insulation performance
 - Concrete start to melt at temperature higher than 1,300 °C
 - Ability of the insulation lining remains intact throughout the test

Fire Test Furnace

Vertical Furnace with 4 m

high by 3.4 m wide

 Horizontal Furnace capable to test loadbearing building elements

Fire testing using RWS

Fire protection of the Immersed Bjørvika Tunnel – new test method

- Development of our own test method for fire protection of concrete in RWS
 - Based on fire testing of large concrete elements
 - RWS-proven systems failed in the larger scale test
- Compressive stress of 11 MPa
- High quality concrete (m=0.40, B55)
- Sealed curing, min. 3 months old
- Relatively large test elements (1.2 x 3.6 x 0.6 m³)
- Sprayed systems must be anchored with stainless steel mesh and bolts
- Board systems must have at least two joints
- 16 TCs for temperature at interface and at reinforcement

Norwegian Public Roads Administration

Materialteknisk seksjon Dato: 2007-06-29

• Source from the Internet

Fire testing using RWS

• Source from the Internet

Q and **A** Section

• Thank you for your attention!!

